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Introduction
Biological systems can adjust their functioning dynamically in face of changing circum-
stances. However, such functional adjustments are constrained by the structural prop-
erties of the components that perform the functions [1–7] as well as the topology of 
the system. Biological systems as complex networks have evolved multiple strategies to 
achieve a ‘working’ reconfiguration of the components that promotes survival through 
shifts in environmental contingencies [8–15]. One strategy is redundancy which means 
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in which ~ 20% of the connections are lesioned while 50% of the nodes are perturbed. 
Moreover, our results for the networks with no lesions and the fully-lesioned networks 
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that a system has multiple structurally identical components serving the same function 
[16–19]. Systems may also utilize multifunctionality (or alternatively, pluripotentiality 
[20, 21]) that is the capacity for a single component to serve multiple functions [22–26]. 
Another strategy for biological systems to respond flexibly to perturbations is called 
degeneracy [9, 10, 27–29].

Degeneracy (or alternatively, ‘distributed redundancy’ [30], ‘distributed robustness’ 
[31], ‘functional redundancy’ [25], ‘extrinsic buffering’ [32]) describes the ability of com-
ponents in a biological system that are structurally different to carry out the same or 
similar functions [20, 21, 21, 28, 33–42]. As difference in the structure implies differ-
ent functions [43], under certain conditions degenerate components do not necessarily 
show functional variety [44, 45] but instead, each degenerate component is responsible 
for a (set of ) function(s) which is initially determined by their biochemical(/physical) 
structure [9, 21, 31]. Unlike multifunctionality and redundancy, degeneracy implies a 
change in the role assignments among the components such that the system can con-
tinue to function even when its normal processes have been compromised.

A biological network with high degeneracy means that the system can show the same 
macroscopic behavior following a lesion even though the underlying network dynam-
ics are significantly different. In other words, if the system is highly degenerate, after a 
lesion, the function can be recovered by a structurally different (i.e., performing a dif-
ferent function under normal conditions) component taking over a new function. For 
example, in the brain many different neural clusters can affect the same motor outputs, 
and if some of the brain areas are damaged, an alternative (non-redundant) pathway can 
be recruited in order to generate functionally equivalent behaviors [46–50]. Degeneracy 
thus suggests how biological systems can thrive despite changes to internal and external 
demands.

It has been shown that degeneracy also plays a role in complexity and evolvability of 
biological systems [8, 10, 27, 28, 32, 36, 51]. Higher levels of degeneracy correlate with an 
increase in the degree of both the functional integration and local segregation of a sys-
tem, and therefore, higher degeneracy is accompanied by higher degree of complexity of 
the systems [33].While local segregation (namely, functional specialization) enables sys-
tem to be flexible against environmental stress (due to diversity of functions), functional 
integration allows system to be robust [52–54]. If a component, or a group of com-
ponents are compromised in a highly degenerate system, functions can be reassigned 
among distinct elements (that are locally segregated) while the macro-level behavior 
(which requires the system to be functionally integrated) is conserved. This adaptability 
brings an obvious advantage over the course of natural selection [46].

To measure degeneracy in systems, Tononi et al. [33] introduced a quantitative meas-
ure for neural networks (see also alternatives [55, 56]) using an information theoretic 
approach. Information theory [57–59] provides a set of tools to describe how informa-
tion is processed in systems. It allows us to measure the statistical (in)dependencies in 
terms of the information content of the components. Mutual information (MI), which 
is a measure provided by information theory, can also capture nonlinear dependencies(/
relationships) that are not detectable by correlation analysis [57, 60]. However, direc-
tion of the interaction between the components cannot be discerned from MI alone [33, 
60, 61]. Incorporating MI with systematic perturbations (to determine directionality), 
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degeneracy is formalized [33] in terms of the causal effects of the changes in the state 
of the subsets (components and/or subgroups of components) on the system’s output. 
If the output activity of the system is not affected by the change (e.g., perturbation) in 
a subset’s state, then the system is highly degenerate with regard to the function that 
is performed by that subset. This information theoretic measure of degeneracy is, first, 
applied to highly abstract networks in the work by Tononi et al. [33] which is followed 
by applications to the weighted networks with a high degree of biological fidelity (e.g., 
Hodgkin–Huxley type neural networks [40] and genetic networks with epistasis [62]).

Although it has been shown that degeneracy as a network property exists at different 
levels of biological organization (from molecules to behavior [30, 36, 46]), a quantitative 
analysis of degeneracy at such levels is sparse and methods are individualized to spe-
cific cases (see the different versions of degeneracy measurements in other works [10, 
55, 63]). In systems biology, information theoretic measures are widely applied to many 
problems [64], yet, to date, there is not a comprehensive study applying this measure for 
biologically realistic networks other than networks with weighted connections.

Neural networks offer one example of how biological systems can incorporate degen-
eracy to ensure survival after being damaged. However, other biological networks are 
likewise capable of recovering partial or full function following damage. For example, in 
between-species interaction networks a species loss can be compensated by other spe-
cies contributing to ecosystem functioning [65]. Likewise, on a smaller scale, it has been 
shown that loss of functioning in some (non-redundant) genes has a weak or no effect on 
the fitness of the gene networks [8]. Although degeneracy might not be detectable under 
normal conditions, after perturbating or lesioning the biological networks, changes in 
the environment may also evoke degenerate responses (‘degeneracy lifting’ effect [9]). 
Environmental (evolutionary) pressure in receptor-signal transduction networks [55] 
can push the signaling pathways to reconfigure into a degenerate form.

Although degeneracy is a feature of biological gene networks, it is unclear whether 
models of gene networks can be analyzed using the same information theoretic 
approaches as used for neural network models. A GRN is a network of gene–gene inter-
actions through their regulators that control the gene expression levels of the products 
(mRNAs and proteins) which, ultimately, determine the cell fate (final cell type, i.e., 
function of the cell) [66]. Measurements of degeneracy at the level of gene transcription 
control may provide insights on how functions of genes that determine the cell function, 
can be recovered as a consequence of the network properties (GRN topology).

Random Boolean network (RBN) models, as discrete models of GRNs, are well-suited 
to study degeneracy since with RBNs we can induce and trace the effects of targeted 
lesions while environmental/external pressure is a parameter that can be controlled over 
in silico experiments. Unlike neuronal networks where edges are (synaptic) weight vec-
tors, RBNs have a static wiring diagrams [67] governed by logic equations that repre-
sent the functions of gene regulatory factors (e.g., transcription factors). Logic equations 
describe the underlying network architecture. For example, for a simple network of 3 
genes, if gene G1 is regulated both directly by G3 and through an indirect link from G2, 
this architecture is represented by the logic function of “G1 = (G2 OR G3)”. Likewise, if 
there is an inhibitory regulation of G1 through G2 while the same architecture is pre-
served from the network described above, this structure can be represented by the logic 
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equation of “G1 = ((NOT G2) OR G3)”. Since each state of gene expression is the direct 
outcome of the activity of (regulatory interactions in) the previous state, one can assess 
the effects of circuit architecture on gene expression levels [66]. Hence, in RBNs, it is fea-
sible to trace the information flow at each (discrete) time step and so, causal influences.

While RBNs have been widely used in system biology to study GRNs, recent work 
[68] has sought to match the complexity of gene expression patterns that are observed 
in developmental processes (such as, mammalian cortical area development [69]) by 
incorporating additional biological details to simulations. This is attained by converting 
Boolean models to equivalent systems of differential equations that describe synergistic 
relations in gene regulatory processes [68]. Unlike widely-used in-silico single-cell gene 
expression data generators such as GeneNetWeaver [70] where simulated networks are 
re-constructed from a limited number of known structures (from E. coli and S. cerevisiae 
[70]), here, the network structure is defined by a (Boolean) ruleset that can be generated 
and manipulated by users [68].

In this study we test to what extent the information theoretic measure of degeneracy 
applies to RBNs as well as continuous models derived from RBN approaches. Further-
more, we test systematic lesions in randomly generated Boolean networks while varying 
the number of perturbed nodes. This enables us to explore how degeneracy quantitively 
changes as a function of interventions to the nodes and induced topological alterations 
in the networks. Results show that degeneracy measures, in most cases, can be applied 
to networks based on Boolean logic in addition to more typical weighted networks.

Results
Lesioning

We first investigate the effects of systematic lesioning on measures of degeneracy in ran-
domly wired RBNs. This is consistent with classical models of RBNs [67] where the sys-
tem is deterministic and no noise term is involved. Edges between network nodes were 
lesioned in two ways. In type-1 lesioning, only incoming edges were lesioned incremen-
tally while it is possible (due to the pseudo-random algorithm to generate the logic func-
tions) that outgoing edges stayed intact (for details see “Methods”). In the second type of 
lesioning (hence the name type-2 lesion), we lesioned all incoming and outgoing edges 
for randomly chosen nodes incrementally.

For classical RBNs, both types of lesioning result in an increase on degeneracy meas-
ures (Fig. 1). That is, removing edges from the network paradoxically increased degen-
eracy. One reason for this may be that progressive lesioning increases the chances of 
a node becoming isolated. In the context of classical RBNs, the activity of the isolated 
node remains constant over time. However, a constant activity profile may also be a 
result of a function of a (set of ) node(s) that is highly robust and yields same output over 
time. Therefore, the degeneracy metric might fall short in cases where the outputs of the 
isolated nodes remain static over time. Here, we hypothesize that degeneracy only works 
as a measure when all units have varying activity.

To test this hypothesis, we induced a small probability that the activity each node 
in the network would flip from 1 to 0, or 0 to 1, on each iteration (see “Methods” for 
details). Results show that the networks with type-1 lesions decrease in average degen-
eracy values as the cut percentage increases (Fig. 2). Similarly, for type-2 lesions, average 
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Fig. 1  Average degeneracy for type-1 (green line) and type-2 (blue line) lesioning in classical RBNs (a). 
Degeneracy, (grey area) is computed as the average MI between subsets of X and O under perturbation over 
increasing perturbed subset size k, in networks with b no lesions and with c 100%-cut condition. In panel 
a, on the x axis, the cut percentage represents the affected number of nodes (in total of 10 nodes) whose 
edges are lesioned given the networks. As cuts becomes larger, degeneracy increases. In panels b and c, 
degeneracy is calculated according to definition given in “Methods” Eq. 3

Fig. 2  Average degeneracy values compared between type-1 (green line) and type-2 (blue line) lesioning in 
RBNs with varying unit activity. On the x axis, the cut percentage represents the affected number of nodes (in 
total of 10 nodes) whose edges are lesioned given the networks. For both lesioning types, degeneracy was 
lowest in the 100% cut condition where edges of all nodes (10) were cut
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degeneracy decreases as a function of lesioning. This validates that degeneracy emerges 
as a network property for RBNs, but only when the activity of all nodes in the network 
changes over time.

Furthermore, we hypothesized that there could be a difference between the effects of 
lesioning types as a direct consequence of the partial lesioning (the outgoing edges are 
preserved) in type-1 condition which can lead some nodes to become dead ends since 
the activity ends in those nodes. Active nodes without incoming edges means that such 
nodes do not serve a function, and this eventually would result in lower degeneracy val-
ues. The comparison of two lesioning types, in Fig. 2, demonstrates that these lesioning 
types are not significantly different in their effects on degeneracy (f(1,10) = 0, p > 0.05).

Perturbation

Degeneracy is calculated as the area between the average MIP(X k;O) (mutual informa-
tion, MI, between the portion of entropy shared by the system for each perturbed sub-
set k and the output O) and overall-MI (mutual information between the system and its 
output) for different perturbed subset sizes, k (see Eq. 3 in “Methods”). This area shows 
a characteristic shape of the degeneracy function: a non-zero value that declines to zero 
as perturbed subset size k approaches k = O, following an increase that is “higher than 
would be expected from a linear increase” [33]. This characteristic shape has further-
more been replicated in networks composed of in Hodgkin–Huxley neurons [40].

In weighted networks with no connections, the average (overall-) MI shows a linear 
increase where degeneracy is zero [33]. Here, this condition (i.e., 100%-of-edges-cut) is 
compared for RBNs with varying unit activity. Our results for no-edges-cut condition 
and the characteristic profile of degeneracy are comparable to corresponding findings in 
previous studies (Fig. 3).

Fig. 3  Degeneracy, (grey area) is computed (see Eq. 3 in “Methods”) as the average MI between subsets of X 
and O under perturbation over increasing perturbed subset size k, in networks with a, c no lesions and with 
b, d 100%-cut condition
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Further inspection of partial degeneracy (see “Methods” for details) values from indi-
vidual simulations showed that partial degeneracy can have a negative value in some 
instances (only two such conditions captured here for comparison, Fig. 4a, b). Although 
we have observed that partial degeneracy can be negative for different cut-conditions 
and different sizes of perturbed subset, when MI is averaged over the simulations for all 
the perturbed subset sizes k, 〈MIP(Xk;O)〉, degeneracy DN(X; O) was above zero in all 
conditions.

Interactions of lesions and perturbations

Increases in both lesion extent and the number of nodes perturbed give rise to differ-
ent metrics in terms of degeneracy, raising the question of how these two factors may 
interact. We therefore conducted additional simulations in which each lesion condi-
tion (0–100%, see “Methods”) was crossed with each perturbation condition (k = 1–10). 
Figure  5a, b show how average partial degeneracy changes as a function of perturba-
tion subset size k, given cut percentages. For both lesioning types, partial degeneracy 
peaks around when half of the nodes (k ~ 5) are perturbed in the system. The measure 
of degeneracy can detect existing isofunctionality between the different structures only 
when one of the structures is perturbed. When half of the nodes in the system are per-
turbed, we, thereby, maximize the probability of selecting/measuring the right structure 
for given degeneracy in cases where network structure is random or unknown.

Results for continuous models with RBN connectivity scheme (cBNs)

We apply the same perturbation and lesioning procedures to RBNs that generate con-
tinuous expression data. These networks also have initial variance due to the model (see 

Fig. 4  Partial degeneracy values from individual networks for each perturbed subset size k. Data from 10 
(k) × 1000 simulations of networks with a no-cut condition and b 100%-cut condition
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details in “Methods” and Additional file  1) which is a system of stochastic differential 
equations (SDEs).

The comparison of the two lesioning types in cBNs (Fig. 6a), demonstrates that both 
conditions have similar effects on the average degeneracy, where there is a no significant 
difference (two-way analysis of variance, ANOVA) found between both types of lesion-
ing (f(1,10) = 9.49, p > 0.01). However, average degeneracy varies with cut conditions.

The degeneracy measures—the area between the average MIP(X k;O) and overall-MI—
demonstrate similar characteristics (Fig. 6c, d), and thus are comparable, to RBN meas-
ures. For the 100%-cut condition (Fig. 6c), degeneracy is closest to zero, consistent with 
findings in previous studies [33]. Likewise, partial degeneracy shows a negative value 
in some instances (Fig. 6f, g) although on average (MI) degeneracy was above zero for 
all conditions and subset sizes k. Moreover, comparable to RBNs, the peak for partial 
degeneracy measures is around when half of the nodes (k ~ 5) are perturbed in the sys-
tem for both lesioning types (Fig. 6).

Discussion
Although a variety of types of biological networks are thought to exhibit degeneracy, 
previous theoretical work has primarily focused on networks with weighted connec-
tions [33, 40, 62]. In this study, we demonstrate that degeneracy measures are also 
suitable for RBNs, with some caveats. Although our simulations largely replicated 
previous studies investigating degeneracy in neurally-inspired networks, RBNs use 
Boolean logic operators rather than weighted connections to determine function. It 
therefore might have been the case that information-theoretic approaches developed 

Fig. 5  Average degeneracy computed as a function of perturbation subset size k in type-1 lesioning (a) 
and type-2 lesioning (b). Each line represents the cut condition for lesioned edges given the percentage of 
number of nodes in networks
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Fig. 6  Panel for cBNs with type-1 and type-2 lesioning (b). In a, average degeneracy values compared 
between type-1 (green line) and type-2 (blue line) lesioning. Degeneracy, (grey area) is computed (see Eq. 3 
in “Methods”) as the average MI between subsets of X and O under perturbation over increasing perturbed 
subset size k, in networks with b, d no lesions and with c, e 100%-cut condition. Panels f, g show partial 
degeneracy values from individual networks for each perturbed subset size k. The distribution of partial 
degeneracy values for g shows clear modes in the data where there is an overlap of the perturbed subset 
and output sheet. Average degeneracy computed as a function of perturbation subset size k in type-1 
lesioning (h) and type-2 lesioning (i)
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for one class of networks might not have generalized correctly to a new class. By 
replicating previous findings using RBN (which are discrete systems) and cBNs, we 
demonstrate that information-theoretic approaches are applicable to a broad range of 
network types.

Network and graph theoretic approaches, frequently formulated in terms of infor-
mation theory, have been applied extensively to neuroscience [52–54, 61, 71–80] to 
predict individual differences, consequences of lesions, and ability to recover func-
tion following injury. Extending this approach to the study of GRNs opens the door 
to investigating the consequences of, and possible remedies for, genetic dysfunc-
tion. Because most genetic functions are performed by subsets of many components 
within functional modules [5, 81], diseases may emerge due to disorganization of the 
components in these modules. Degeneracy measures can be recruited for predicting 
and inducing topological modifications (for example, ‘rewiring of diseased modules’ 
[81]) to achieve desired functional outcomes that have clinical significance, such as 
enhanced pharmaceuticals with better drug targets.

In addition to replicating previous results, we explored the impact of systematically 
manipulating network connectivity (lesioning) while decomposing degeneracy by 
size of the perturbed subset. In doing so, we identify a potential interaction between 
the number of perturbed nodes and the magnitude of the impact of lesions on par-
tial network degeneracy. In networks in which ~ 20% of the connections are lesioned 
while 50% of the nodes are perturbed, it is observed that average partial degeneracy 
reaches its highest value among all other cut conditions and for all perturbed subset 
sizes. These are likely conditions in which sufficient connectivity (here, k = 5, ~ 10%-
cut for RBNs and ~ 20%-cut for cBNs) allows for the expression of degenerate struc-
tures without compromising their function, whereas more lesioning would diminish 
both primary and degenerate structures, and more perturbation would confound the 
functions of the nodes. Likewise, if perturbation (of the number of nodes) is smaller, 
not all possible degenerate structures might be expressed in the network or, when the 
lesioning is less, degenerate structures might be unobservable since most of the pri-
mary structures are intact.

In the literature it has been shown that additional damage (gene/node deletions) 
can restore the function of previously compromised (metabolic) networks [82–84]. 
Here, we show that progressively lesioning a network results in reduced partial 
degeneracy across all perturbation subsets. However, when a perturbation subset 
includes approximately half of the nodes in the network, we observe an increase in 
partial degeneracy relative to larger or smaller perturbation subsets. This finding sug-
gests that it might be possible to determine an optimum degree of lesioning and per-
turbation given a network to achieve higher degeneracy in the systems. Thus, partial 
degeneracy measures might be helpful to develop strategies to predict how to recover 
the function after damage.

As originally conceived, degeneracy was intended to capture the idea that identi-
cal functions could be carried out by distinct network structures. Intuitively, there-
fore, degeneracy would seem to have a lower bound at zero—in a network with no 
degeneracy, all structures would serve their own individual functions, and perturba-
tion of those structures would disrupt network output related to the function served. 
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Although on average degeneracy in our simulations tended to be above or equal to 
zero, we observed individual simulations in which partial degeneracy values were 
below zero. In previous studies [40, 62], negative degeneracy has been observed espe-
cially for network models with increased biological fidelity.

One possible reason for the observation of negative degeneracy may be that the informa-
tion-theoretic measure for degeneracy was originally developed for and tested on neural 
networks with no initial variance. As the biological fidelity of the models (thus, inherent 
variance in the systems) increases, for some conditions (lower coupling and lower connec-
tion probability [40] and networks with lower complexity [62]) negative degeneracy has 
been shown. However, we have not observed such effects on overall degeneracy measure-
ments where 1000 MI values for each possible subset size k were averaged across random 
networks. Mathematically, degeneracy gets a negative value when the portion (k/n) of the 
MI between the whole system (n) and the output sheet (n/2) is higher than the average of 
the MI between the (perturbed) subset of the system (k) and the output sheet (n/2). How-
ever, the biological meaning/equivalence of negative degeneracy remains unclear. For stud-
ying more biologically realistic complex networks, adjustments in the tools for quantifying 
degeneracy may be needed.

Another challenge for degeneracy metrics is that, when the units have no varying activ-
ity over time due to complete isolation from rest of the network, this may result in higher 
partial degeneracy values. In that case, the degeneracy measure cannot accommodate the 
difference between robustness of a node’s output and time-invariant output of an isolated 
node. To account for such an effect, the ‘function outcome’ definition in degeneracy tools 
may need to be revised.

Furthermore, in this study, the total number of nodes given a network was set to 10 which 
is comparable to the network sizes studied in previous works on degeneracy [33, 40, 62]. 
However real systems such as biological networks often consist of thousands of connected 
nodes. When we scale up our network simulations to networks with 100 nodes (while other 
parameters remained the same), we observed that the entropy calculated for conditions in 
which the number of perturbed units is greater than around 20 reaches an upper bound 
(see Additional file 1: Text 4 for simulation results).

Since calculating degeneracy depends on accurately calculating entropy over all possi-
ble perturbed subset sizes, the solution seems to be to increase the number of timesteps in 
our simulations. However, we note that when the number of perturbed units is, for exam-
ple, 100, there are 2100 (~ 1029) unique states, indicating the absolute minimum number of 
timesteps needed to visit each network state once (and accurately estimating entropy would 
likely require simulations of length 1030 timesteps). Simply put, it is unfeasible to calculate 
degeneracy for even moderately sized networks in the way described by previous authors. 
We acknowledge this as a weakness of the degeneracy measures that applies both to RBNs 
as well as weighted network, and suggest that future work should aim at developing defini-
tions of degeneracy that can be applied to larger networks.

Methods
Network architecture

RBNs were initially proposed as simplified models for gene regulatory networks by 
Kauffmann [85] where network nodes represent the genes, and the edges represent the 
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regulatory functions. A RBN constitutes a discrete dynamical system that has N nodes, 
each with K incoming edges (hence, also referred to as N-K models). Each node (gene) 
can be ON or OFF (1 or 0); a network of N binary nodes therefore has 2  N distinct 
states [85]. This system is state determined [85] according to Boolean functions that are 
assigned to each node randomly (from 22^K possible functions [86]) where each node 
has a minimum of zero to a maximum of N outputs. Such a state-space allows random 
network configurations which often leads to nonlinear dynamics. The total number of 
nodes representing the genes, here, is N = 10, thus there are 210 possible states. In RBNs, 
the state of the nodes in the network can be updated synchronously or asynchronously 
in discrete time steps. In this study, for simplicity purposes, a synchronous update rule 
is chosen.

RBNs have a well-defined function mapping scheme through logic (Boolean) operators 
which constitute the rules for connections that control the state of gene regulators. In 
our simulations, RBNs have different combinations of the following operators: AND, OR, 
NOT, XOR, COPY. For cBNs, operators AND NOT, OR, NOT, COPY are randomly placed 
to generate rulesets (functions). All operators have equal probability to be assigned (see 
Additional file  1: Text 1 and Additional file  1: Text 3 for details). Incoming edges are 
randomly distributed for each node with the condition that each node has at least one 
(thereby, connectivity is preserved) and at most two (more than one Boolean operator) 
edges mapped to the other nodes. Thus, outgoing edges are assigned to the nodes in a 
completely random fashion (allowing for the emergence of highly regulated nodes).

Although the networks that are simulated in this study carry the general character-
istics of N-K models—as they are binary networks connected with Boolean functions, 
these networks differ in some aspects. For example, N is limited to 10, in order to gener-
ate comparable conditions with previous studies on degeneracy measures ([33, 40, 56]). 
The number of edges for each rule, is a randomly assigned value that can be either 1 or 2 
while a node can have many outgoing edges up to N nodes. Finally, there is no constraint 
on the expected density of truth values (namely, bias parameter p).

Network lesioning

Degeneracy, as a strategy (or design principle [10, 21, 87]) for networks to recover their 
function, refers to the rearrangement of (structurally different) components in a way that 
function/output remains the same even after a damage. In a network with high degen-
eracy, there are many possible network reconfigurations that can produce/recover the 
function. To test the potential factors that give rise to (higher/lower) degeneracy in net-
works, here, we induce interventions to the systems at the network-level by lesioning the 
edges.

Two different lesions were introduced to the synthetic networks. In type-1 lesion-
ing, all incoming edges from randomly chosen nodes were cut while the outgoing edges 
were preserved. In the second type of lesioning, all incoming and outgoing edges were 
cut from randomly selected nodes given the percentage of total lesioned edges. In both 
types of lesioning, the edges are lesioned in increments of ten percent of the total num-
ber of the nodes given a network. For example, in type-1 30% cut condition, we have 
lesioned all the incoming edges of the 3 randomly chosen nodes given a network of 10 
nodes. Likewise, in type-2 30% cut condition, all the edges (incoming and outgoing) of 3 
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randomly chosen nodes (out of 10 nodes total in a network) were lesioned. By 100%-cut 
condition (in both lesioning types), we refer to networks where no node is connected to 
the other, and so the nodes are isolated.

For both lesioning types, 0%-cut condition refers to networks that are not lesioned, 
yet the edges are randomly disturbed (according to the method that is defined previ-
ously). This may lead some nodes to not have any edges due to random assignments of 
the rules, therefore, mimicking a (partially) lesioned condition.

Biologically realistic random Boolean networks: discrete to continuous

Boolean functions describe how the states of the regulators control the state of the tar-
get genes [68]. In our study, Boolean functions are randomly generated for each simula-
tion with incremental lesioning. To execute numerical simulations, we used two types of 
RBNs: RBNs (classical model), and cBNs (BoolODE [84]).

Classical RBNs are discrete dynamical systems where system output consists of binary 
values. To induce perturbation, we set the bit-flip probability [88–92] to 0.25 for the per-
turbed subset. For RBNs with varying unit activity, besides the perturbation subset, all 
units have a bit-flip probability of 0.05 at a random time step. The total number of time 
steps in a simulation is 1000, and we discard the first 10 time points as a burn-in period.

The BoolODE pipeline by Pratapa et  al. [68], similar to classical RBN simulations, 
takes input files that are randomly generated Boolean networks. Then, BoolODE sys-
tematically converts a random Boolean network into a system of SDEs that is a continu-
ous model of gene regulation (for model specifications see Additional file 1: Text 2 and 
Additional file 1: Text 3). Time points in the numerical solution result in vectors of gene 
expression values that correspond to individual cells. That means for every analysis, each 
sampled time point is from a cell [68], and in this study, we sample from 990 time points 
(1000–10, first 10 timepoints treated as burn-in) for each gene in a single simulation 
and total of 1000 simulations are run for each lesioning percentage increment of 10  s 
(from no cut condition to all 10 genes cut) which makes 10,000 simulations for each 
type of lesioning and thus, 2 (lesioning type) × 10 (k subset of perturbed genes) × 11 (cut 
conditions, no-cut condition inclusive) × 10 synthetic cells with random gene regulatory 
mechanisms.

Quantification of degeneracy in neural networks

To measure degeneracy, we used the mathematical framework described by Tononi 
et al. [33]. In this framework, degeneracy is characterized in terms of the average mutual 
information between subsets of elements within a system and an output sheet (which is 
also a subset of network X). The output sheet is a set of randomly chosen nodes in a net-
work and its activity is a result of the interactions the other nodes in the system. Thus, 
activity in the output sheet represents the behavior or the response of the whole system.

From information theory, entropy (Shannon entropy with log base 2 for binary repre-
sentation) is calculated from probability density functions for subsets of X (Eq. 1). Then 
mutual information that measures the portion of entropy shared by the system subset 
Xj

k and the output O, is calculated as follows (Eq. 2):
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H(Xj
k) and H(O) are the entropies of Xj

k and O considered independently, whereas 
H(Xj

k;O) is the joint entropy of subset Xj
k and output O. To measure degeneracy in the 

network, we need to determine the effects of the (subset of ) element(s) on the entropy 
of the output—the behavior of the network. Since mutual information does not capture 
direction, however, mere calculation of mutual information is not enough to determine 
the contribution of the elements to the output of the system. To overcome this, pertur-
bations (variance) are injected to the system. If no initial variance is assumed in the sys-
tem, the value of mutual information between the network and the output is zero before 
any perturbation [33]. Variance (perturbation) is injected as uncorrelated random noise 
to each subset k.

Under such perturbations, mutual information of the system is computed as in EQ3 
and this procedure is repeated for all subsets of sizes 1 ≤ k ≤ n. Then, degeneracy DN 
(X;O) of X with respect to O can be calculated as:

MIP(X;O) is MI for all elements to the output sheet, and 〈MIP(Xj k;O)〉 is the average of 
the contribution of each perturbed subset size k to the output sheet.

Quantification of degeneracy in cBNs

Biological RBN simulations (via BoolODE) results in continuous unit activity in terms 
of gene expression vectors since the simulated networks are translated into nonlinear 
dynamical system (Additional file 1: Text 2 and Additional file 1: Text 3, Additional file 1: 
Figure 1). To quantify degeneracy in RBNs we therefore discretize the gene expression 
vectors by taking the median activity for a unit. Activity that is above the median is set to 
1, and activity below the median is set to 0.

We apply the degeneracy measures to the discretized gene expression vectors gener-
ated from the simulations. In our simulations, perturbations are systematically injected 
to the subset size k of genes as normally distributed (with mean = 0, and standard devia-
tion = 0.01) random noise through the governing SDE. The number of elements (namely, 
the genes) is n = 10 for all simulations with output sheet consisted of the activity of 
O = n/2 = 5 elements, that is also randomized for each trial.

Partial degeneracy in random networks

Degeneracy can be measured by alternate ways that are mathematically equivalent (see 
other definitions in [33]). The formal definition that we use in this study requires averag-
ing over every MI measured between each node (unit, j) which are incrementally per-
turbed (from k = 1 to k = n) and the output sheet for a given network structure (〈MIP(Xj 
k;O)〉). However, in case where all the networks are randomly generated and the output 

(1)H(X) = −

n
∑

i=1

P(xi)log2P(xi)

(2)MI
(

Xk
j ;O

)

= H
(

Xk
j

)

+H(O)−H
(

Xk
j ,O

)

(3)DN (X;O) =

n
∑

k=1

[

〈

MIP
(

Xk
j ;O

)〉

−

(

k

n

)

MIP(X;O)

]
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sheet units are randomly chosen, an alternate way of computing 〈MIP(Xj k;O)〉 is taking 
the average of MI measured for each random network that is perturbed once for a par-
ticular perturbed subset size k (see Fig. 7) in range of 1 ≤ k ≤ n. This way, degeneracy is 
measured for a specific subset given a network rather than for all possible subset sizes. 
Here, we call this measurement partial degeneracy.
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Fig. 7  Illustration of RBNs under perturbation. A network of X, composed of nodes (light and dark blue 
circles, n = 10) that are interconnected. Arrows represent the edges for incoming and outgoing. Light blue 
circles represent randomly chosen perturbation subsets of nodes for k = 2 (a) and k = 7 (b). Perturbation 
(represented as syringes) of the nodes in boxes with k notation, is injected as a variance (uncorrelated noise). 
The box with O notation represents output sheet that is also consisted of randomly chosen set of (n/2 = 5) 
nodes (dark blue circles). For each network, MI is calculated for perturbed set size k and the output sheet O, 
for all subset sizes of perturbed set noted as j
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